## A NEW DETERMINATION OF THE ABSOLUTE CONFIGURATION OF THE CHIRAL AMINE

Yoshimitsu Nagao, Masahiro Yagi, Takao Ikeda, and Eiichi Fujita\* Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611, Japan

Summary: A new method for assignment of the absolute configuration of the asymmetric carbon atom attached to an amino or imino group using rac.-3-hexadecanoyl-4-methoxycarbonyl-1,3-thiazolidine-2-thione (rac.-HDMTT) (4) is described.

In the preceding paper,<sup>1)</sup> we reported a new synthetic method for the optically active amide 3 utilizing chiral recognition of racemic amine 2 with 3-acyl-4(R)-methoxycarbonyl-1,3thiazolidine-2-thione [4(R)-AMTT] 1. In this reaction, 4(R)-AMTT 1 showed a preferential reactivity to the (S)-amine. This chiral recognition should be available for determination of the absolute configuration of the chiral amine.



Our method is explicable as follows. After aminolysis of 2 mol. equiv. of rac.-3-hexadecanoyl-4-methoxycarbonyl-1,3-thiazolidine-2-thione [rac.-HDMTT]  $(4)^{2}$  with 1 mol. equiv. of optically active amine (or imine) 5, the specific rotation of the recovered HDMTT (6) is determined. By the sign of its specific rotation the absolute configuration of the amine (or imine) used can be assigned.



Scheme 1

Thus we tried aminolyses of rac.-HDMTT (4) with several types of amines, *i.e.*  $\alpha$ -amino acid derivatives  $7a\sim1$ ,  $\beta$ -amino alcohols  $8a\simd$ , and 3-amino- $\beta$ -lactams 9a,b and  $10a\sime$ , in order to judge the availability of this method.

a :  $R^1 = NH_2 \cdot HC1$ ,  $R^2 = Ph$ ,  $R^3 = OMe$ b :  $R^1 = CH_2Ph$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = OMe$ c :  $R^1 = NH_2 \cdot HC1$ ,  $R^2 = CH_3$ ,  $R^3 = OMe$ d :  $R^1 = CH_3$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = OMe$ e :  $R^1 = CH_2CH(CH_3)_2$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = OMe$ f :  $R^1 = CH_2OH$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = OMe$ g :  $R^1 = CH_2SH$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = OMe$ h :  $R^1 = CH_3$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = OMe$ h :  $R^1 = CH_3$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = NHCH_2CO_2H$ i :  $R^1 = CH_2CH(CH_3)_2$ ,  $R^2 = NH_2$ ,  $R^3 = NHCH_2CO_2H$ j :  $R^1 = CH_2SSCH_2CH(NH_2 \cdot HC1)CO_2Me$ ,  $R^2 = NH_2 \cdot HC1$ ,  $R^3 = OMe$ k :  $R^1 = CH_2Ph$ ,  $R^2 = NH_2$ ,  $R^3 = OH$ j :  $R^1 = -(CH_2)_3 - R^2$ ,  $R^2 = -NH_-$ ,  $R^3 = OH$ 



 $R^{1}$ 

a :  $\mathbb{R}^1 = \mathbb{NH}_2$ ,  $\mathbb{R}^2 = \mathbb{H}$  $\tilde{\tilde{b}}$  :  $\mathbb{R}^1 = \mathbb{NH}_2 \cdot \mathbb{T}SOH$ ,  $\mathbb{R}^2 = \mathbb{CHPh}_2$ 



a : 
$$X = S$$
,  $R^{1} = NH_{2}$ ,  $R^{2} = R^{3} = R^{4} = H$   
 $\tilde{b}$  :  $X = 0$ ,  $R^{1} = NH_{2} \cdot HC1$ ,  
 $R^{2} = R^{4} = H$ ,  $R^{3} = CHPh_{2}$   
c :  $X = 0$ ,  $R^{1} = R^{4} = H$ ,  
 $R^{2} = NH_{2}$ ,  $R^{3} = CHPh_{2}$   
d :  $X = 0$ ,  $R^{1} = NH_{2}$ ,  $R^{2} = H$   
 $R^{3}=CHPh_{2}$ ,  $R^{4}= -S - \bigvee_{\substack{N=N \\ CH_{3}}}^{N-N}$   
e :  $X = 0$ ,  $R^{1} = H$ ,  $R^{2} = NH_{2} \cdot HC1$   
 $R^{3}=CHPh_{2}$ ,  $R^{4}= -S - \bigvee_{\substack{N=N \\ N=N}}^{N-N}$   
 $R^{3}=CHPh_{2}$ ,  $R^{4}= -S - \bigvee_{\substack{N=N \\ N=N}}^{N-N}$ 

The results are summarized in Tables 1, 2, and 3.

In the case of  $\alpha$ -amino acid derivatives, the (S)-enantiomer reacted with 4(R)-HDMTT preferentially and *vice versa* [(R)-7+4(S)-HDMTT], which is in good coincidence with the chiral recognition of racemic amine with 4(R)-AMTT 1. Apparent opposite chiral recognitions with 7g and 7j are attributed only to the R,S sequence rule by Cahn, Ingold, and Prelog.<sup>3)</sup>

In the  $\beta$ -amino alcohol derivatives, the (S)-enantiomer showed a preferential reactivity to 4(S)-HDMTT resulting in the recovery of 4(R)-HDMTT.

| compou<br>R      | nd Z<br>or S | reaction<br>solvent             | reaction<br>time (hr) | ر (%) ( | recovered HDMTT 6<br>R or S excess | ee <sup>c)</sup> (%) |
|------------------|--------------|---------------------------------|-----------------------|---------|------------------------------------|----------------------|
| 7a               | R            | CH <sub>2</sub> Cl <sub>2</sub> | 13                    | 99.4    | R(-)                               | 60.5                 |
| 7b               | S            | CH2C12                          | 8                     | 92.1    | S(+)                               | 63.3                 |
| ~~<br>7c         | R            | CH <sub>2</sub> Cl <sub>2</sub> | 1.5                   | 95.2    | R(-)                               | 42.3                 |
| ∼~<br>7d         | S            | CH2C12                          | 1.5                   | 91.6    | S(+)                               | 44.2                 |
| 7e               | S            | CH2C12                          | 3.3                   | 88.8    | S(+)                               | 45.6                 |
| 7f               | S            | CH <sub>2</sub> Cl <sub>2</sub> | 4                     | 90.8    | S(+)                               | 23.7                 |
| ~~<br>7g         | R            | CH2C12                          | 1.5                   | 44.3    | S(+)                               | 33.8                 |
| 7h               | S            | CH2Cl2-THF<br>(1:1)             | 144                   | 150.1   | S(+)                               | 8.4                  |
| 7i               | S            | CH2Cl2-THF<br>(1:1)             | 6                     | 99.1    | S(+)                               | 25.4                 |
| 7j <sup>d)</sup> | R            | CH2C12                          | 2                     | 110.8   | S(+)                               | 33.7                 |
| 7ĸ               | S            | THF                             | 44                    | 91.6    | S(+)                               | 11.4                 |
| 71<br>71         | S            | CH2Cl2-THF<br>(1:1)             | 17                    | 89.8    | S(+)                               | 21.8                 |

Table 1. Chiral Recognition of *rac.*-HDMTT (4) with  $\alpha$ -Amino Acid Derivative 7

a) All reactions were carried out in the presence of  $Et_3N$  (1.42 mol. equiv. to compound Z). b) The maximum chemical yield (cy) of recovery of HDMTT is calculated as 200%. c) Enantiomeric excess percent (ee%) of the recovered HDMTT and the configuration of C-4 were determined based on 4(R)-HDMTT []: R = (CH<sub>2</sub>)<sub>14</sub>CH<sub>3</sub>].<sup>2</sup>) d) 4 Mol. equiv. of *rac.*-HDMTT 4 were employed.

| compou<br>F | ind <u>8</u><br>{ or S | reaction<br>time (hr) | ر دىر <sub>P)</sub> (%) | recovered HDMTT<br>R or S excess | 6<br>ee <sup>b)</sup> (%) |
|-------------|------------------------|-----------------------|-------------------------|----------------------------------|---------------------------|
| 8a          | S                      | 1.5                   | 91.4                    | R(-)                             | 11.1                      |
| 8b          | S                      | 7                     | 87.6                    | R(-)                             | 19.2                      |
| °∼<br>8c    | R                      | 5.8                   | 93 4                    | S(+)                             | 40.4                      |
| 8d          | S                      | 4.5                   | 93.5                    | R(-)                             | 7.3                       |

Table 2. Chiral Recognition of rac.-HDMTT (4) with  $\beta$ -Amino Alcohol 8<sup>a</sup>)

a) All reactions were carried out in  $CH_2Cl_2$ . b) See footnotes on Table 1.

| Table 3. Chiral Recognition of racHDMTT | (4) | ) with 3 | 3-Amino- | B-lactams | 9 | and | 10 |
|-----------------------------------------|-----|----------|----------|-----------|---|-----|----|
|-----------------------------------------|-----|----------|----------|-----------|---|-----|----|

|                                |                                 |                                               | ~                      | ~                    | ~~                                 |                      |
|--------------------------------|---------------------------------|-----------------------------------------------|------------------------|----------------------|------------------------------------|----------------------|
| compound 9,10<br>configuration |                                 | reaction<br>solvent                           | reaction<br>time (day) | cy <sup>c)</sup> (%) | ecovered HDMTT 6,<br>R or S excess | ee <sup>c)</sup> (%) |
| 9a                             | <sub>R</sub> a) <sub>β</sub> b) | CH <sub>2</sub> Cl <sub>2</sub> -THF<br>(1.1) | 1.1                    | 107.4                | R(-)                               | 32.9                 |
| $\tilde{9b}^{d}$               | Rβ                              | CH2C12                                        | 3                      | 117.2                | R(-)                               | 15.3                 |
| $10a^{d}$                      | Rβ                              | CH2C12                                        | 6                      | 141.5                | R(-)                               | 3.2                  |
| ĩõ̃b <sup>d</sup> )            | Sβ                              | CH2C12                                        | 4                      | 136.6                | R(-)                               | 9.3                  |
| 10c                            | Ra                              | CH <sub>2</sub> Cl <sub>2</sub>               | 2.7                    | 111.0                | S(+)                               | 7.9                  |
| ĩõd                            | Sβ                              | CH2C12                                        | 4                      | 185.0                | R(-)                               | 0.4                  |
| $\tilde{10e}^{d}$              | Ra                              | CH2Cl2                                        | 4                      | 164.1                | S(+)                               | 10.5                 |

a) Configuration of the carbon atom attached to the amino group. b) Relative configuration of the amino group. c) See footnotes on Table 1. d) 1.0-1.4 Mol. equiv. of Et<sub>3</sub>N was used.

In the 3-amino- $\beta$ -lactams,<sup>4)</sup> (R)-penam-, (R)-cephem-, and (S)-oxacephem-derivatives showed a preferential reactivity to 4(S)-HDMTT; (R)-oxacephem-derivatives reacted predominantly with 4(R)-HDMTT.

On the basis of these results, the absolute configuration of chiral amines (or imines) can be determined, as summarized below.

|                                      | preferred configuration<br>(R or S) of the recovered<br>HDMTT (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the absolute<br>configuration of the<br>optically active sample |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| (l) α-amino acid                     | R(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > R                                                             |
| derivatives:                         | S(+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > S                                                             |
|                                      | sulfur compounds $\left\{ R(-) - R(-) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > S                                                             |
|                                      | The $\frac{1}{2}$ and $\frac{1}{2}$ $\int \left( S(+) - \frac{1}{2} \right) \left( S(+) - \frac{1}{2} \right$ | → R                                                             |
| (2) β-amino alcohol<br>derivatives:  | R(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > s                                                             |
| der ivatives.                        | S(+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | → R                                                             |
| (3) 3-amino-β-lactam<br>derivatives: | oxacephem<br>and<br>oxapenam<br>S(+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > S                                                             |
|                                      | $\begin{array}{c} \text{cephem} \\ \text{and} \\ \text{penam} \end{array} \right\} \left\{ \begin{array}{c} R(-) & \\ S(+) & \end{array} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | → R<br>→ S                                                      |

Because HDMTT is yellow crystal, one can easily monitor it on its separation by the column chromatography.

This convenient method for determination of the absolute configuration of the chiral amines will promise a wide utility.

## References and Notes

- 1) Y. Nagao, M. Yagi, T. Ikeda, and E. Fujita, the preceding paper.
- 2) Because 4(R)-HDMTT [1: R =  $(CH_2)_{14}CH_3$ ] showed the highest specific rotation  $[[\alpha]_D^{2^2}-78.17^\circ$ (c = 1.02, CHCl<sub>3</sub>] among several 4(R)-AMTT 1<sup>1</sup>, *rac*.-HDMTT (4) (mp 74.5~75°, yellow needles from ether-n-hexane) was employed for this purpose.
- 3) R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem. Int. Ed. Engl. 5, 385 (1966).
- 4) We appreciate Dr. W. Nagata, Shionogi Research Laboratory, Shionogi & Co. Ltd., for his kind gifts of  $\beta$ -lactams, 9a and 10a $\sim$ e.

(Received in Japan 19 September 1981)